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Abstract 

A theory that describes the diffraction effects from 
stacking faults in close-packed polytypic crystal struc- 
tures was developed in two previous papers of this series 
[Michalski (1988). Acta Cryst. A44, 640-649; Michalski, 
Kaczmarek & Demianiuk (1988). Acta Cryst. A44, 650- 
657]. In this paper, attention is paid to the measurement 
of these diffraction effects for the cases where needle- 
shaped or rod-like specimens cannot be made from the 
given sample (e.g. thin films) or when single-crystal 
samples should not be destroyed for preparing such 
specimens. For this purpose, methods of measurement 
based on standard X-ray diffraction equipment such as 
oscillation or Weissenberg cameras and a powder 
diffraction diffractometer have been developed A 
complete description of the limitation of the area of the 
reciprocal lattice that can intersect the Ewald sphere has 
been provided. Examples of the results obtained by these 
methods are given. The diffractometer two-dimensional 
scanning method, which allows an undistorted reciprocal 
lattice to be recorded and higher precision and results 
more convenient for mathematical treatment than in 
photographic methods to be obtained, seems to be 
especially interesting. 

1. Introduction 

Results of measurements of diffraction effects caused by 
stacking faults in different structures were described by, 
among others, Jagodzinski (1954, 1971), Mitchell 
(1956), Jagodzinski & Arnold (1960), Rai & Krishna 
(1968), Jain & Trigunayat (1970), Krishna & MarsaU 
(1971a,b), Lal & Trigunayat (1971), Steinberger, 
Kiflawi, Kalman & Mardix (1973), Farkas-Jahnke 
(1973a,b), Prasad & Srivastava (1973), Kozielski 
(1975), Palosz & Przedmojski (1976), Minagawa 
(1975, 1977, 1978, 1979), Pandey & Krishna (1977), 
Pandey, Lele & Kfishna (1977), Chand & Trigunayat 
(1977), Prager (1977), Mehrotra (1978), Demianiuk, 
Kaczmarek, Michalski & Zmija (1979), Palosz (1981) 
and Michalski, Demianiuk, Kaczmarek & Zmija (1979, 
1981a,b, 1982). 
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These results were usually obtained by X-ray diffrac- 
tion of needle-shaped or rod-like specimens recorded on 
photographic films. The diffraction effects caused by 
stacking faults were also observed in other experiments, 
some of which are mentioned below. 

Comparison of Weissenberg and diffractometer 
methods for measurement of X-ray diffuse scattering 
from disordered molecular crystals was described by 
Welberry & Glazer (1985), X-ray diffraction studies of 
powder samples of disordered crystals of AIIB vI 
compounds were described by Palosz & Przedmojski 
(1978), high-temperature neutron diffraction studies of 
single-crystal samples of cobalt were described by Frey 
& Boysen (1981) and results of using high-resolution 
electron microscopy (HREM) for this study were 
described by Iijima (1982). 

In Berliner, Fajen, Smith & Hitterman (1989), 
measurement of diffraction effects caused by stacking 
faults in the 9R(12) 3 structure was made by low- 
temperaUn'e neutron diffraction of powder samples of 
Li and Na crystals. The results favourably compared with 
theory (Michalski, 1988; Michalski, Kaczmarek & 
Demianiuk, 1988) and computer model analysis 
(Berliner & Wemer, 1986). 

Recently, it has become necessary to study stacking 
faults in crystal structures of thin films or plates in view 
of new technological possibilities to change the layer 
arrangement in modem technology [especially the 
molecular-beam epitaxy (MBE) method], which is used 
for crystallization of materials with required properties 
(e.g. semimagnetic semiconductors). The influence of 
some factors on changes in layer arrangement has already 
been partially examined. For example, the influence of 
some impurities on the crystal structures of AnB vI 
compounds was described by, among others, Palosz 
& Przedmojski (1976) and Michalski, Demianiuk, 
Kaczmarek & Zmija (1979, 1981a,b, 1982). 

On the other hand, it is known (Warren, 1959; Verma 
& Krishna, 1966) that for identification of the layer- 
arrangement sequence in both the base polytypic 
structure and regions with faults, it is sufficient to 
register the X-ray diffraction distribution along small 
parts of chosen reciprocal-lattice rows. It is not necessary 
to register the large area of the reciprocal lattice. 
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Therefore, sufficient information about the structure 
can be obtained without destroyng the samples for the 
preparation of needle-shaped or rod-like specimens. 

2. Area of  the reciprocal lattice that can intersect the 
Ewald sphere for samples in the form of  crystal thin 

films or plates 

In planning the measurements for registration of the 
reciprocal lattice from samples in the form of crystal thin 
films or plates, it is necessary to take into consideration 
the consequence of satisfying the conditions 20 > 09 or 
20 > (180 ° - co), which are connected with the screening 
of the diffracted beam by the sample, where the angle co 
indicates the position of the sample surface (of the 
specimen holder for the goniometer) in its rotation 

around the axis of the cameras (or main axis of the 
goniometer) measured from the direction of the primary 
beam (for the upper-level Weissenberg equi-inclination 
method, the reflection angle 20 is replaced by an angle 
2/7, which is the projection of angle 20 onto the plane of 
the nth layer). This gives an additional limitation of the 
area of the reciprocal lattice that can intersect the Ewald 
sphere. This is illustrated in Fig. 1 for different methods. 

In the case presented in Fig. l(a),  not all the points 
inside the limiting-sphere section [the circle described by 
the expression 22 -~ exp(ico); 0 < co < 2zr] can intersect 
the Ewald sphere (circle). Only the points lying between 
one half of the limiting-sphere section [the semicircle 
described by the expression 22 -1 exp(ico); 0 < co < zr] 
and two halves of the Ewald circles described by the 
expression 2 -1 [exp(ico) 4- 1], where - corresponds to the 

/ reciprocal lattice area 
~ _  / which can intersect 

~ 2 / ~ . ~  the Ewald sphere 

-~ / ei~+l " ~  / reciprocal lattice area 
surface of plate " T \ / ~  for which the corresponding 

f " - , ,  J ~..-.~-~\ observed due to the sample 
. . . . . . . . .  \  iffrac e  e  no bo 

e'%l /" 
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2e i'~ 2e ic° 

~ .  s /"/" 
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1 1 ico (~+-~)e  

~ _  2 i,, 
x e  

Fig. 1. Limitation of the area of the reciprocal lattice that 
1 i~ 1 can intersect the Ewald sphere in the study of samples 

1 i~ __~ ~ e  + --~ in the form of crystal thin films or plates by different 
- methods. (a) Recording of the zero-layer plane by 

r 
l i0~, 1 lei~ 1 

- 

(c) 

rotation (oscillation) of crystal or Weissenberg camera 
methods or by using a standard powder diffraction 
diffractometer. (b) Recording of upper layers on 
Weissenberg camera by the equi-inclination tech- 
nique. (c) Recording of upper layers on rotation 
(oscillation) crystal or Weissenberg cameras by the 
normal-beam method. 
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condition 20=o9  and + to 2 0 = ( 1 8 0 ° - o 9 ) ,  can 
intersect. 

For recording of the upper layers on the Weissenberg 
camera by the equi-inclination method, Fig. l(b), the 
reciprocal-lattice area that can intersect the Ewald sphere 
is similarly constructed. The only difference is that the 
radii of both the limiting- and the Ewald-sphere sections 
are smaller and expressed by the well known expression 

1/22 = [ ( 1 / ) ] , )  2 - i2(a*)2] 1/2, (1) 

where a 7 is the identity period of the reciprocal lattice 
along the oscillation axis and i is a Miller index. 

In the case presented in Fig. l(c), the Ewald sphere can 
only intersect the points enclosed between the semicircle 
described by (2 -I + 22-1) exp(iog), 0 < o9 < yr, two semi- 
circles described by 221 exp(iog) -4- ,~-1, 0 < co < 7g, and 
two arcs described by 2-1exp(iog)+22 -I,  0 < o9 < 
arccos(222 -1) or 0 < (180 ° - o9) < arccos(2221), where 
- corresponds to the condition 20' = co and + to the 
condition 20" = (180 ° - o9) and 20" is the projection of 
the angle 20 onto the recorded plane of the reciprocal 
lattice. 

The area that can never intersect the Ewald sphere, 
enclosed between the arcs described by 221 exp(iog)+ 
2 -1, 0 < o9 < Jr, reaches in the normal plate direction to 
the points of the reciprocal lattice whose distance from 
the centre is 

2 -1 sin arccos(2221). (2) 

When the reciprocal-lattice rows parallel to the 
rotation axis are recorded, the points on these rows are 
at different distances from the zero-layer plane. The area 
of the reciprocal-lattice space that can intersect the Ewald 
sphere depends on this distance. For points positioned on 
the zero-layer plane, it is the same as in Fig. l(a), 
whereas for points positioned on the upper-layer plane it 
is the same as in Fig. l(c). 

The construction of the reciprocal-lattice area that can 
intersect the Ewald sphere presented in Fig. 1 can also be 
understood analytically. For this _Plurpose, let us 
equate the modulus of the function 2-  l[exp(iog) 4- 1] to 
the length of the diffraction vector 22- sin 0: 

2 -1 [(COS o9 4- 1) 2 + sin 2 O9]1/2 -- .  22-1 sin 0. (3) 

From (3), we obtain the expected relationships: 20 = 
180 - o9 for + sign and 20 = o9 for - sign. 

The position of the area that can intersect the Ewald 
sphere on a Weissenberg exposure results from the 
following expressions (Luger, 1980): 

y = O and x = g(ct + O), (4) 

where c~ + 0 = 09 and g = 0.5 mm o-1. 
As is well known (e.g. Luger, 1980), the reciprocal- 

lattice direction with a = 0 (perpendicular to the sample 
surface) corresponds to the following straight line on the 
Weissenberg photograph (Fig. 2). 

x - -  gO = gy  (or x = y / 2  when g = 0.5). (5) 

After substituting co = 20 {corresponding to the curve 
2-1[exp(io9) - 1]} in the equation a + 0 = o9, we obtain 
a = +0. This case corresponds to the other straight line 
in Fig. 2. 

x = g 2 0  = g 2 y  (or x = y when g = 0.5). (6) 

On the other hand, for curve 2-1[exp(iog)+ 1] we have 
ct = - 0  and o9 = 0. This case corresponds to the straight 
line x = 0. 

The aforesaid limitation of the reciprocal-lattice area 
that can intersect the Ewald sphere is an additional factor 
to be taken into account in measurements, distinguishing 
the study of samples in the forms of crystal thin films or 
plates from the study of rod-like samples. 

3. Recording of diffraction effects from stacking 
faults by the two-dimensional diffractometer scanning 

method 

It is known (Alexander & Smith, 1962; Luger, 1980) 
that, in diffractomet~r measurements in the o>-20 scan 
mode, the scan is made in the direction of the diffraction 
vector (reciprocal-lattice vector) while, in the og-scan 
mode, it is made in the direction perpendicular to the 
diffraction vector (reciprocal-lattice vector). Mathieson 
& Stevenson (1985) have also described a third mode of 
one-dimensional scanning, which scans the immobile 
reciprocal lattice along the Ewald circle. For a limited 
region, adjacent to the point of intersection of this scan 
direction and diffraction vector, their inclination is equal 
to 0. According to the notation given by Luger (1980), 
this scan mode can be denoted by 20. Three possible 
directions of one-dimensional scan mode, described 
according to the notation given by Luger (1980), are 
illustrated in Fig. 3. They can be called radial, azimuth 
and inclined. 

y[mm], 
80_ x=O x=y/2 x=Y 

60_ 

40 ei~+ 1 

- - ~ ~  e' 1 
20 \ 

0 
0 20 40 60 80 x[mm] 

Fig. 2. Position of the reciprocal-lattice area that can intersect the Ewald 
sphere on a Weissenberg exposure [compare with photographs in 
Figs. ll(c) and 12(a)]. 
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It is also known (Warren, 1959; Verma & Krishna, 
1966) that the information about the layer arrangement in 
polytypic structures is contained in the X-ray diffraction 
distribution along the reciprocal-lattice rows for which 
h - k  ~ 3r. These rows in any geometry are not 
coincident with any directions of one-dimensional scan 
modes. 

Therefore, in our case one-dimensional scan modes are 
not sufficient. It is necessary to use the method of 
scanning required for reciprocal-lattice rows inclined to 
the diffraction vector (reciprocal-lattice vector). For this 
purpose, the idea of two-dimensional scanning proposed 
by Mathieson (1982), Mathieson & Stevenson (1984, 
1985), Ryan (1992), wrj ik  (1993), Sass (1993) and Gaca 
(1993) was applied. The technique of two-dimensional 
(Aoo, A20) scanning first described by Mathieson (1982) 
and Mathieson & Stevenson (1984) was applied by 
Mathieson & Stevenson (1985) to the measurement of 
reflectivity (rocking) curves of imperfect crystals. They 
also described some properties of two-dimensional space 
(Aog, A20) in which the results of this scanning were 
presented. 

Wrjcik (1993), Sass (1993) and Gaca (1993) applied 
two-dimensional scanning to the measurement of the 
satellite reflexions of GaAs(P)/GaAs layered modulated 
structure. These reflexions were positioned near the point 
004 of the reciprocal lattice along the direction almost 
parallel to its 00l row. 

Two examples of such measurements follow. In the 
first example, the distribution of X-ray diffraction along 
diffraction vectors is measured (by the o.>-20-scan mode) 
for successively settled values of an o9 angle (by the 
sample rotation Aoo alone with immobile counter). Let 
this method be called the two-dimensional radial scan 
mode and denoted by the symbol Aog, 0>-20. 

In the second example, the distribution of X-ray 
diffraction along the arc perpendicular to the diffraction 
vector (reciprocal-lattice vector) is measured (by the at- 
scan mode) for successively settled lengths of the 
diffraction vector (by movement under the condition 
A20 equal to 2Ao9). Let this method be called two- 

dimensional azimuth scan mode and denoted by 
A(o>-20), o9. 

Both the above-mentioned examples are illustrated in 
Fig. 4. 

In general, there are six possible two-dimensional scan 
modes: double radial (Aog, o.r--20 and A20, 0--20), double 
azimuth [A(ar-20), o9 and A20, o9] and double inclined 
[A(a}--20), 28 and Aw, 28]. Different factors may affect 
the choice of one of them. For example, in the first case, 
fewer Ao9 or A(w-20) steps are sufficient when the 
inclination between the diffraction vector and the 
registered row is almost 0 ° , and in the second case when 
this inclination is almost 90 ° . 

Determination of o9 and 20 angle ranges for two- 
dimensional scanning is illustated by examples given 
below. Let us consider plates of (00.1)- and (10.0)- 
oriented SiC crystals examined using CuKc~ X-ray 
radiation. The reciprocal-lattice area that can intersect 
the Ewald sphere for the (00.1)-oriented plate, rotated 
around the a axis is shown in Fig. 5. 

The o9 and 20 angles that satisfy the diffraction 
condition for the chosen reciprocal-lattice points are 
determined by the expression 

og:eho.t,,+x = O~,o.t,,+x + t~0.t,,+~, (7) 

scan o>--20 

step " A ~  
8--~ 

(a) 

step A(to-20) 

~,~m c0 
8--~ 

8 

'/ So/L A 

(b) 

Fig. 4. Illustration of examples of two-dimensional scan modes. (a) 
Radial Ato, a>--20, and (b) azimuth A(ar--20), to. 

~ t s c a n ~  
~ c a n  20 

Fig. 3. Directions of three possible one-dimensional scan modes: to, 
o)-20 and 20 [denoted according to the notation given by Luger 
(1980)1. 

i ! i ix: i ,o ~ i 

:: k ~ / /  a i zu~0.2~+x 

Fig. 5. Illustration of the reciprocal-lattice area that can intersect the 
Ewald sphere and to and 20 angles that satisfy diffraction conditions 
in the study of (00.1)-oriented plates rotated around the a axis (SiC 
crystal, Cu Kt~ radiation). 
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where 

O:LhO.Jn+x = arcsin(A/2{(ha*) 2 + [c*(l + x/n)]2} 1/2) (8) 

ct:~o.t,+ x = arctan{4-ha*n/[c*(ln + x)]} (9) 

and h is the first Miller index, n is the number of layers in 
a unit cell of a polytype, (ln + x) is the fourth Miller- 
Bravais index and x can be 1 . . . . .  n - 1. 

In the ease of thin films or plates of a (10.0)-oriented 
crystal rotated around the a axis, the reciprocal-lattice 
area that can intersect the Ewald sphere is illustrated 
in Fig. 6. The w and 20 angles are determined by 
expressions similar to (7)-(9). Only tZ±hO.t,+x is deter- 
mined by a different expression: 

Ot~o.t,+ x = arctan[(ln + x)c*/(4-ha*n)]. (10) 

For a diffractometer with independent computer- 
controlled driving of specimen holder and counter, this 
measurement can be made in the one-dimensional scan 
mode using expressions (7)-(10) and substituting the full 
number of steps instead of n. 

After computing, the two-dimensional distribution of 
X-ray diffraction intensity is drawn as a two-dimensional 
map. The map can be drawn in (21w, 2120) space 
described by Mathieson & Stevenson (1985) or in polar 
coordinates [diffraction vector length 22 -1 sin 0 and the 
angle ct = ( 0 -  o9) of inclination with respect to the 
surface normal] naturally resulting from measurements. 
However, for interpretation of the results, the Cartesian 
coordinates of the reciprocal lattice 

x* = (2 sin 0/2) sin(0 - o9) 
(11) 

y* = (2 sin0/2) cos(0 - co) 

seem to be more convenient. As axis units, one can use 
~k -1 or a multiplier of reciprocal-lattice constants in a 
given direction. The Jacobi determinant of transforma- 
tion between reciprocal-lattice space and 21o9, z120 space 
is expressed by 

22 -2 sin 0 cos(0 - w)(cos co - sin 0) 

x [cos(0 - o9) - sin(0 - co)]. (12) 

If the radiation Ko~ containing both the oq and ¢z 2 
components is used in measurements, then the compo- 
nent ~2 has to be removed by one of the known 
procedures. The components ot 2 are shifted from c~ 1 in the 
diffraction-vector direction. Therefore, in the case of 
two-dimensional radial scanning, they can be removed 
before drawing the maps. In other cases, it has to be done 
on the basis of the radial sections of maps. 

An example of a two-dimensional map of X-ray 
diffraction intensity distribution along part of row 10.1 
(from 10.2n to 10.3n) for the SIC-6H(33) structure is 
shown in Fig. 7. 

Comparison of the positions of the reciprocal-lattice- 
point (reflexions) maxima experimentally determined on 
the basis of the map (obtained with Kct 1 radiation) for the 
examined 6H structure and calculated for the 6H 
structure without any stacking faults are presented in 
Table 1. From this comparison, one can see that the 
maxima of the reciprocal-lattice points (reflexions) 10.13 
and 10.17 are shifted about Ah3.(10.13 ) = +0.00075 Jk -1 
and Ah3(10.17 ) = - 0 . 0 0 0 6 0 A  -1 (or in general about 

o 1 
Ah3(6M 4- 1) _~ 0.00067 A- ), respectively, in relation 
to the 6H(33) structure without any stacking faults. 
However, the remaining reciprocal-lattice-point maxima 
are not shifted. 

Using Table 2(c) of Michalski, Kaczmarek & 
Demianiuk (1988), one can easily find that the structure 
of the examined sample is not the 6H(33) structure free 
from stacking faults and that the faults are not of the 
same type. Absence of shifts of reflexions 6M 4- 2 results 
from the coexistence of stacking faults causing the peak 
shift of these reflexions in the opposite direction, and of 
the reflexions 6M 4- 1 in the same direction (given 
above). Thus, only the faults described by Zhdanov's 
symbols [(22), (5), (14), (4) and (211)] can be taken into 
consideration. 

This example illustrates the great potential sensitivity 
of the above method for studying subtle diffraction 
effects caused by a very small concentration of stacking 
faults that are not perceptible by other methods (film 
methods) in plate or film samples. 

00.0 ne* i 

Fig. 6. Illustration of the reciprocal-lattice area that can intersect the 
Ewald sphere and o) and 20 angles that satisfy diffr cfion conditions 
in the study of (10.0) oriented films or plates by two-dimensional 
scanning (CuKu radiation, SiC crystal). 

4. Registration of diffraction effects from stacking 
faults in plate or thin-film samples by film methods 

4.1. (00.1)-oriented surface of  samples 

Single crystals with a (00.1)-oriented surface are often 
obtained directly in the crystallization process (e.g. SiC 
crystals) or after cleaving (e.g. GaAs and sometimes 
AIIB vI compounds crystals). The influence of dopants on 
the layer arrangement can be easily observed during 
crystallization of (00.1)-oriented thin films (e.g. by the 
MBE method). 

The structure in the middle (not on the edge) of such 
oriented surfaces cannot be examined by the c-axis 
crystal oscillation method but can be examined by 
the Weissenberg method. The choice of oscillation axis 
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is determined by the condition h -  k ~ 3r for the 
reciprocal-lattice rows to be recorded. When the crystal 
oscillates around the a axis, sufficient information about 
the structure is contained in the zero layer of  the 

reciprocal lattice (Fig. 5). When the crystal oscillates 
around the a axis, diffraction effects of  changes in the 
layer arrangement can be recorded only on the upper 
layers of the reciprocal lattice. 
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Fig. 7. Experimentally obtained two-dimensional map of X-ray diffraction intensity distribution along part of row 10.I (from 10.2n to 10.3n) for the  
SIC-6H(33) structure. (a), (b) Two views of the  w h o l e  map. (c) Particular reflexions magnified (units on axes ,~-1, difference of X - r a y  in tens i ty  
b e t w e e n  neighbouring contour l ines  c o r r e s p o n d s  to 100 or 50 counts s -~). 
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Table 1. Calculated and observed position o[ reciprocal- 
lattice-point maxima for SiC-6H (A - l )  

hk.l 10.13 10.14 10.15 10.16 10.17 
Structure 0.85940 0.92467 0.99075 1.05684 1.12225 
examined 
Structure 0.85865 0.92470 0.99075 1.05680 1.12285 
without 
faults 

The area of the reciprocal lattice that can intersect the 
Ewald sphere for oscillation around the a axis is 
presented in_ Fig. 5. Parts of the rows 10.1 (from 10.2n 
to 10.3n), 10.1 (from i0.2n to i0.3n) and 00.1 (00.n, 
00.2n and 00.3n), sufficient for layer-arrangement 
determination, are contained within this area. 

Such diffraction geometry has an advantage in relation 
to the oscillation around the c axis, viz by moving the 
film along the oscillation axis and the crystal parallel to 
its surface after each exposure, sufficient parts of the 
reciprocal lattice from many different crystal regions can 
be recorded on one Weissenberg film, as illustated in 
Fig. 8. The structure on the surface is changing from 
6H(33) + DS to 15R(32)3 + DS to 4H + DS. 

4.2. (01.0)-oriented surface of samples 

Because both c and a axes lie in the (01.0) plane, 
registration of a sufficient part of the reciprocal lattice is 
possible with crystal oscillation around the c or a axis. 
Areas of the zeroth and nth layer of the reciprocal lattice 
that can intersect the Ewald sphere for oscillation around 
the c axis are illustated (for SiC crystals) in Fig. 9. Since 
a = b for a hexagonal crystal, the (01.0) plane is 
equivalent to the (10.0) plane. 

On the basis of Fig. 9 and expressions (1) and (2), one 
can see that the points of row 10.1 on the nth layer of the 
reciprocal lattice can be recorded only when 

(1/2) sin arccos(1 - 22n2c'2) 1/2 < a* 

(or in equivalent form nc* < a*). (13) 

The condition (13) is satisfied only for the following 
relation between the lattice constants a and c: 

c/na > 3]/2/2. (14) 

Usually for close-packed polytypic crystals these condi- 
tions are not satisfied. Thus, the other rows (e.g. 20.1 and 
30./) must be recorded and larger angles of oscillation are 
necessary. 

For example, in the SiC crystals, the 09 angles that 
satisfy the diffraction condition for 20.0, 20.n, 30.0 and 
30.n reflexions are expressed by 

o920.0 = arcsin(2a*) (15) 

o920.n = 90° - arccos [2( 4a.2 + c'2n2)/4a*] (16) 

o930.0 = arcsin(32a*/2) (17) 

and 

9 0  ° [2(9a .2 + (18) o930.n --" - -  arc, cos 

To record sufficient parts of 20.1 and 30.1 rows, the 
oscillation range from w~ < o92o.0 = 35.36° to o9f > 
w30.~ = 77.47 ° is necessary. 

4.3. (11.0)-oriented surface of samples 

The (11.0) crystallographic planes are surfaces of 
cleavage in many polytypic crystals (e.g. in crystals of 
AnB vI compounds). Thus they often occur in different 
samples. The a* and c* axes lie within the surface but not 
the a axis. The necessary parts of the reciprocal lattice 
can be recorded by oscillation around the a* or c* axes or 
around the a axis. However, the diffractometer method of 
two-dimensional scanning cannot be used in these cases. 

From Fig. 10, one can see that for oscillation around 
the c axis the recording of row 10.1 (from zero to n 
layers) is not possible when a* < 2 -],  and of row 20.1 
when 2 a * <  2-]. As these conditions usually prevail, 
only row 21.1 can be recorded• 

: . . . ' ~  • : t  
• f . ' , ~ . ~  

.. 

• " ~ .  . , ,  

. ,  

_a 

Fig. 8. Parts of  rows 10.1 registered on a Weissen- 
berg photograph from 12 regions of  the (00.1)- 
oriented surface (SiC crystal, Cu Ko~ radiation, 
2r = 5.76cm, reduction 1.5x).  
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The oscillation range necessary for recording the 12./ 
row (from 12.0 to 12.n) is determined by the following 
expressions (Fig. 10a): 

(/)12.0 = arcsin(71/22a*/2) - arc tan(31/2/9)  

Wl2.n = 9 0  ° - -  arctan(31/2/9)  

-- a rccos  [2(27a 2 + 4nEcE)/12(al/2)a*]. 
(19) 

Fig. 9. Areas of the zero layer (continuous line) and the n layer (dashed 
line) of the reciprocal lattice that can intersect the Ewald sphere and 
angles to that satisfy the diffraction condition for crystal oscillation 
around the c axis [(10.0)-oriented SiC crystal plate, Cu Kot radiation]. 

For recording the 11.0 and 11.n reflections, the following 
angles must  be contained in the oscillation range 

o)l 1.0 = arcsin(31/E2a*/2) 
(20) 

toll., = 90 ° -- a rccos  [2(3a* + n2c*E)/E(al/E)a*]. 
For ZnS crystals and with Cu Kot radiation, these angles 
have value 

Wl2.0 = 27.08, o912., = 33.86, o911.0 = 23.75, 
(21) 

Wll .n  = 33.54 °. 

Therefore, a typical 15 ° oscillation is sufficient. For 
preliminary study, the chosen oscillation range can be 
selected optically, which is more convenient. 

In the case of  oscillation around the a* axis, the zero- 
level Weissenberg exposure does not contain the 
necessary information about the close-packed layer 
arrangement.  Diffraction effects from stacking faults 
can only be recorded on the upper-level Weissenberg 
exposures. Examples  are presented in Fig. 11. 

The X-ray diffraction photograph presented in Fig. 
l l (d)  was obtained by moving the film along the 
oscillation axis (--, 5 mm)  and the crystal parallel to the 

(a) 

(b) 

Fig. 10. The case of the c-axis-oscillated samples 
with the (ll.0)-oriented surface (ZnS crystal, 
Cu Kt~ radiation). (a) Reciprocal-lattice area that 
can intersect the Ewald sphere on the zero layer 
(continuous line) and n layer (dashed line), 
221 =(~-2- -n2¢ '2 )1 /2 .  (b) Photograph (2r= 
8.6 cm, reduction 1.5 x ). 



556 POLYTYPIC CRYSTALS CONTAINING SINGLE STACKING FAULTS. III 

[00.1] direction along its surface (,-~ 1 mm) after each 
exposure. The structure of the sample is seen as changing 
along the [00.1 ] direction from 4 / / +  DS to 12H + DS to 
6H + DS. 

For taking photographs around the a axis, the sample 
must be first rotated around e* through 30 °. Then the 
diffraction geometry is the same as presented in Fig. 6. 
Examples of Weissenberg exposures are given in Fig. 12. 

It is interesting (see Figs. 6, 11 and 12) that the parts of 
rows 10.l and 20.l registered during a very small co angle 
are diffused in a direction perpendicular to the oscillation 
axis and exhibit the different structures occurring in the 
area of surface taken by the X-ray beam. This fact 
suggests that when the primary-beam section is line-like, 
the diffraction pattern from all the structures placed on an 

exposed line along the c axis can be registered during one 
exposure. 

4.4. Choice of the orientation of samples 

When an orientation of the plate face or thin film is not 
settled (determined) beforehand by other factors, an 
analysis of the reciprocal-lattice area that can intersect 
the Ewald sphere allows one to choose (determine) a 
suitable orientation to record the desired parts of the 
reciprocal lattice. For example, in ZnS or SiC crystals 
with a (11.0)- or (10.0)-oriented surface, the part of row 
10.l of the reciprocal lattice from 10.0 to 10.n (see Figs. 9 
and 10) cannot be recorded by the c-axis oscillation. It 
can be recorded after rotating (reorienting) the surface 
around the c axis through an angle co 1 < co < co2 in 

m 

. . . . . . . . . . .  ! . . . . .  . . . . .  i . . . . . . . . . . . . . . . .  

' n JY" ............ ". 
ne* he* 

(a) (b) 

(c) (d) 

Fig. 11. The case of the a*-axis-oscillated samples with the (11.0)-oriented surface (upper-level equi-inclination Weissenberg method, ZnS crystal, 
Cu Ka radiation). (a), (b) Reciprocal-lattice area that can intersect the Ewald sphere. (c) X-ray photograph for case (b) with the entire area 
intersecting the Ewald sphere. (d) Parts of rows 21.1 (from 21.fi to 21.2fi) from many different regions of the surface (2r = 5.76cm). 



relation to the (11.0) plane or through o93 < to < o94 from 
the (10.0) plane. 

The o91 and to4 angles mentioned above follow from 
the limitation of  the reciprocal-lattice area that can 
intersect the Ewald  sphere on the zero layer while the to2 
and to3 angles similarly result on an n layer, as follows. 
From Figs. 9 and 10, 

(a*/2)2  = sin(30 ° - co l) 
(22) 

(a*/2)2  = sin to4, 

which have the solutions 

tol = 30° - a rcs in (2a* /2 )  

to4 = a rcs in(2a*/2) .  
(23) 

(a) 

The to2 and to3 angles concerned with the n layer can be 
found from the equations 

(1 /2)  c o s w  - (1/22) = a* COS(to 2 + 6 0  °)  

(1 /2)  cos to - (1/22) = a* cos(90 ° - to3) 
(24) 

(1 /2)  sinto = a* s i n ( t o / +  60 °) 

(1 /2)  sin to = a* cos(90 ° - to3), 

which have the solutions 

to2 = arc-~os [(22/2a*)( 2-2 - -  222 --  a*2)] -- 60° 

and (25)  

to2 = 90° -- a r ~ ° s  [(22/2a*)( 2-2 -- 222 -- 0*2)] • 
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Fig. 12. Parts of rows 10.1, 20.1 and 30.1 recorded on Weissenberg exposure of the sample with the (11.0)-oriented surface rotated around the c* axis 
through 30 ° (ZnS crystal, CuKa radiation, 2r -- 5.76cm). (a) Entire reciprocal-lattice area intersecting the Ewald sphere (reduction 1.5x). 
(b) Parts of rows 20.l recorded for small w range (magnification 3x).  
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Thus the values of these angles are: 

for the ZnS crystal, 

w~ = 16, 55, w 2 = 28,23,093 = 1,77,  o94 = 13,45°; 

(26) 

for the SiC crystal, 

o91 = 13.16, 09z = 27.43, o93 = 2.57,094 = 16.84°. 

(27) 

5. Discussion 

The method proposed in this paper has some advantages 
over the methods involving other forms of the specimen. 
For some cases of examination, only this method is 
possible. In other cases, it is a more convenient method 
for primary investigations before specially preparing 
the specimen. It is also an absolutely non-destructive 
method. 

During the preparation of needle-shaped or rod-like 
forms of the specimen, some parts of the crystal are 
always destroyed and so remain unexamined. In the 
proposed method involving the plate or thin-film form of 
the samples, there is no such possibility. It is valuable 
when a succession of structures changing along a given 
direction in the crystal are examined. 

Further, this method seems to be convenient for 
structural examination during the process of thin-f'dm 
crystallization. Another advantage is the possibility of 
obtaining information about the crystal structure in many 
different crystal regions on a single X-ray film. 

Comparing the film and the diffractometer two- 
dimensional scanning methods, we can see that the latter 
is not possible for some orientations of the sample 
surface [e.g. (11.0)]. Thus, differently oriented samples 
become necessary. The method given by Michalski 
(1994) seems to be convenient for an accurate orientation 
and setting. The advantages of the diffractometer two- 
dimensional scanning method are pictures of undistorted 
reciprocal lattice and greater accuracy and convenience 
for mathematical treatment. 

This work was supported by KBN grant 
0819/S2/94/06. 
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